ED 049 613
AUTHOE

TITILE
INSTITUTIICHN
SPONS AGENCY
BUREAU NO
PUE CATE
CCNIERACT
NOTE

EDES ERICE
DESCRIPIORS

IDENTIFIERS

AESTRACI

DOCUMENT RESUME
=4 EN 008 860

Fitzhugh, Fobert J.; Chadwick, Martin M.

IMP: The LRDC Integrated Macro Package.

Pittsburgh Univ., Fa. Learning Research and
Develorment Center.

Office of Education (CHEW), Washingtcn, D.C. Bureau
of Rescarck.

ER-5-0253

Dec 70

CEC~4-10-158 (010)

112,

EDRS Frice MF-$0.65 HC~=$6,.58

Ccmputer Assisted Instruction, *Computer Based
Lakoratories, *Computar Programs, *Guides, Input
Output, *Programing, *Programing Languages, Time
Sharing

IME, *Integrated Macro Package

The Learning Research and Development Center

Time~Sharing System (LEDC/TSS) supports numerous non-standard devices

and terminals

and provides a variety cf powerful prcgraming options,

enabling the researcher to maintain close control over the
experimental environment. Tc achieve this degree of flexibility, it
was necessary to write programs exclusively in assembly language,
which made prcgram develcpment time ccnsuming and produced programs
that were difficult to "dekug." The integrated Macrc Package (IME)
was developed tc prcvide a frograming aid which does not become
invclved in the problems of compiler writing. It provides a
programing structure and a body cf debugged and documented routines

tc programers

who write for the LRDC/TSS. Although it is used largely

for ccmputer-assisted instruction and on-line laboratory application,
mcst ¢of the routines are general purpose<€. IMP has a conditional

assembly feature,

which permits the fprogramer to identify sections of

the code that should be assembled only if a specified ccnditicn is
met. This guide defines the ccnventions governing memory allocation,
subroutine cells, input/output, and some miscellaneous functicn
routines. This IMP-type soluticn wculd seem to be appropriate for
labcratory installations with smaller computers and applications for
which there are nc¢ suitable, higher level languages available.

(Author/JY)

UNIVERSITY OF PITTSBURGH - LEARNING R&D CENTER ~

{n o

IMP THE LRDC INTEGRATED MACRO PACKAGE

%

b |
: . 1971/2

RS \\J ROBERT J. FITZHUGH ano MARTIN M. CHADWICK

O :

]

N\

<>
17] 182

1964003

. —————

N
-t
P
~
-
>
d

N
N
3
N

- 7
L]

U.S. DEPARTMENT OF HEALTH, EDUCATION
& WELFARE
DFFICE OF EDUCATIDN
THIS DOCUMENT HAS BEEN REPRODUCED
EXACTLY AS RECEIVED FROMTHE PERSON OR
ORGANIZATION ORIGINATING IT. POINTS OF
VIEW OR OPINIONS STATED DD NOT NECES-
SARILY REPRESENT OFFICIAL OFFICE OF EDU-
CATION POSITION QR POLICY

IMP

THE LRDC INTEGRATED MACRO PACKAGE

Robert J. Fitzhugh and Martin M. Chadwick

Learning Research and Develcpment Center

University of Pittsburgh

December 1970

The research reported herein was performed pursuant to Contract
N00014-67-A-0402-0006 (NR 154-262) with the Personnel and Training
Branch Psychological Sciences Division, Office of Naval Research.
The document is a publication of the Learning Research and
Development Center, supported in part as a research and development
center by funds from the United States Qffice of Education,
Department of Health, Education and Welfare.

PREFACE

This document describes the LRDC Integrated Macro Package
(IMP). IMP operates with the Digital Equipment Corporation's
MACRO-9 Assembler, and knowledge of that system is assumed.

The authors wish to thank the members of the Applications
Programming Group, particularly Mr. William Schmiedlin and
Mr. Raymond McKnight, for their contributions to the development

of IMP.

iii

TABLE OF CONTENTS

PREFACE « + + v o v o o 4 o o o o o o o o o o o o o« o o oo o iii
1.0 INTRODUCTION . & v v v v 4 v v o o o o o o o o o o o o o 1
2.0 GENERAL DESCRIPTION & v v v v o o = ¢ & o o o s o o o o » 3
3.0 USE ANL) OPERATION OF IMP . . + v « « « o« & ¢ o o o « o« o+ 11
4.0 IMP ROUTINES « « v v v v 4 ¢ o o o o v o o s o o o s s oo 16

4.1 SUBROUTINE CALL ROUTINES « + « ¢ v = « « « ¢ ¢« o+« 16

4.2 MEMORY ALLOCATION ROUTINES « « « « o o o o o o o o« 21

4.3 INPUT/OUTPUT ROUTINES « « « « o ¢ o o o o o o o o o o 27

4.4 MISCELLANEOUS FUNCTION ROUTINES « « « « « + « « « « « 65
REFERENCES & & & 4 v v vt v v o v o o o oo o e s oo oeaea 8
APPENDIX A: RESERVED WORDS . . « v v v o ¢ ¢ ¢ ¢ o « o o o o« o 90
APPENDIX B: I/O PARAMETER LISTS « « ¢ o« o o o o o o o o o o« o 91
APPENDIX C: ERROR CODES « « v v v ¢ « o o « o a o o o o« o o« 93
APPENDIX D: IMP EQUIVALENCES . + « ¢« ¢ v ¢ ¢ o ¢ o o o o o o« 96
APPENDIX E: CRT CHARACTER SIZE CHART « « = « « « « « « + « « o 100

iv

1.0

INTRODUCTION

1.0 INTRODUCTION

The Computer Facility of the Learning Research and Development
Center of the University of Pittsburgh supports an on-line behavioral
science laboratory as well as computer-assisted instruction (CAI)
research and development. The computer system is built around a 32K
Digital Equipment Corpcration PDP-7, a single-address, 18-bit word
machine with a 1.75 microseconds cycle time. Sixteen of the 32K in
the ¢DP-7 are obtained from a PDP-9 whose memory the PDP-7 is able to
access through a special interface developed at LRDC. A time-sharing
system called the LRDC Time-Sharing System (LRDC/TSS) has been
developed for this system and has been in operation for several years.

The LRDC/TSS supports numerous non-standard devices and
terminals and provides a variety of powerful programming options,
enabling the researcher to maintain close control over the
experimental environment. The cost of this flexibility, however, is
programming complexity. Available higher level languages such as
FORTRAN were found to be unsuitable, forcing programmers to write
exclusively in assembly language. Program development time was
typically long and programs were difficult to debug. The Integrated
Macro Package (IMP) was developed as a partial solution to these
problems.

Although some of the features of IMP were designed to meet
requirements specific to the LRDC configuraticia, the package has a
number of characteristics which should be of interest to those
facing similar problems. Given a good macro assembler of the type
available on many computers, IMP illustrates how it is possible to
provide a significant programming aid without becoming involved in
the problems of compiler writing. A package of this sort can be
developed and refined over time by an assembly language programmer
with no prior experience in programming language development. It
can be as extensive or as limited as is desired and can be tailored

to meet specific application or configuration requirements. This

IMP solution wuwuld seem to be apprcpriate for many laboratory
installations with smaller computers and applications for which
there are no suitable higher level languages available.

IMP is the simplified, linear descendent of an earlier effort
called SKOOLBOL (Nemitz). SKOOLBOL incorporated a number of clever
design notions and was an early attempt at a computer-assisted
instruction and pcychological experimentation langunge. The language
had a '""COBOL-like'" appearance and was designed to provide programmers
with a natural, English-like command set.

A full compiler was never developed for SKOOLBOL, although one
was discussed and partially designed. The actual compilation
procedure used invoived 1 two-step process of pire-assembly and
assembly. The pre-assembler was a separate program which did little
more than restructure the SKOOLBOL source lines into a form
acceptable to the manufacturer's MACRO-9 Assembler. The pre-
assembler punched the restructured SKCOLBOL program on cards which
were then assembled much like a normal assewbly language program.

Although these procedures were cumbersome and time-consuming,
SKOOLBOL failed to gain wide acceptance for other, more fundamental,
reasons. Viewed historically, the desire to develop an "English-
like' language was probably premature and perhaps unnecessary.
Considerable programming power and flexibility was lost in return
for a concise, English-like structure, and programmers faced with
complex problems were often forced to return to assembly language.
In addition, SKOOLBOL programs required a core-resident and non-
relocatable subroutine package which was of fixed size and which
included all routines, whether or not they were referenced. Because
of these difficulties, the decision was made to abandon SKOOLBOL in
favor of the Integrated Macro Package, an extensive package of
macro functions which can be called by pfogrammers writing in
assembly language. The version of IMP described in this document
has been in active use for over one year and has proved to be a
practical and satisfactory compromise between a higher level

. language and pure assembly language programming.

2

2.0

GENERAL DESCRIPTION

2.0 GENERAL DESCRIPTION

The Integrated Macro Package (IMP) provlides a programming

structure and a body of commonly-used routines\ to application
programmers who write in PDP-9 assemtly languape for the LRDC Time-
Sharing System. IMP is a programming aid rathdr than a "language,"

although a number of higher-level services are |provided. Nonetheless,
programmers do not write "in" IMP but rather us}] it as a programming
e IMP handles

orage, and input/

with IMP can call

tool. A structure or framework is provided sin|

subroutine calls, nemory allocation, variable s

output requests. Because the programmer working

upon a set of well-debugged and documented routijnes, both programming

and debugging time is reduced. Most of these rdutines are general-

purpose, and to that extent, IMP should not be considered a

specialized package intended only for computer-z@sisted instruction

(CAI) or on-line laboratory applications. 1Iis ;#imary vurpose is to

reduce programming overhead without sacrificing Fhe power and

flexibility of assembly language-programming.

The ful! Integrated Macro Package occupiﬁk approximately 1.5K,

or less than 20% of the memory available to eafh applications program
operating under the LRDC Time-Sharing System. fSince most applications
> routines, only those

This

programs use less than 50% of the available IN

routines required are loaded with each applicjtions program.

selective loading is accomplished through the
This

programmer to identify sections of code that

assembly option of the PDP-9 zssembler.
if a specified condition is met. One of thes
or not a symbolic name has ieen encountered a
the assembly process. This is specified by p
portion of the program with the statement ".I
with the statement ".ENDC."

'use of the conditional
option permits the
ihould only be assembled
» conditions is whether
\d defined earlier in
“eceding the conditional

"DEF" and following it

If the variable [hame is defined when the

assembler encounters the ".IFDEF'" statement, |the program up to the

" ENDC'" statement is assembled in a normal fﬂshion.

undefined, the conditional portions appear on

not assembled.

If the name is

the listing but are

All IMP routines are conditionally defined in the IMP source
code with the condition being the prior definition of the routine
name. Since the entire IMP source deck is placed behind each program
to be assembled, only those IMP routines referenced are assembled with
the program. Figures 2.1 and 2.2 illustrate the conditional assembly
of the IMP routine MOVE. The original and unassembled source code
for the routine is shown in Figure 2.1. The conditional that must be
satisfied to generate an assembly of the routine is the statement
",IFDEF MOVE." If an applications progranmer referenced the routine,

as in the following example:

CALL MOVE /REFERENCE TO IMP ROUTINE

the condition would be satisfied and the routine would be assembled
with the program,as in Figure 2.2.

IMP itself uses this conditional assembly feature. Many IMP
routines reference other IMP routines as well as a number of secondary
routines internal to the package. To fully eliminate unused portions,
all routines are conditionally coded and are assembled only when
required. This is illustrated in Figures 2.3 through 2.6 with the
routines "TYPE" and "SK1INT''. When the applications programmer wuses
the routine "T+7C", the conditional statement ".IFDEF TYPE" is
satisfied, and the unassembled source code in Figure 2.3 is assembled,
as shown in Figure 2.5. When "TYPE" is assembled, the symbol "SKIINT"
is defined, and that routine, shown in Figure 2.4, is conditionally
assembled and included in the program, shown in Figure 2.6. This
nesting of conditionals within IMP will, in many instances, extend

as far as four routines deep.

.IF DEF MOVE

/MOVE A ROUTINE TO MOVE ONE OR MORE CELLS FROM
/SK48 ONE SPECIFIED STORAGE AREA TO ANOTHER. THE DATA
/ TO BE MOVED MUST BE TERMINATED WITH AN ASTERISK IN
/ THE LOW ORDER HALF OF A WORD IN EITHER PACKED
/ (2 PER WORD) OR UNPACKED ASCII
/ CALLING SEQUENCE;
/ ON INPUT SOURCE = ADDRESS OF SENDING FIELD
/ RECEVE = ADDRESS OF RECEIVING FIELD
/ CALL MOVE
5 RETURNS HERE
MOVE LAM /LOAD A MINUS ONE

TAD SOURCE /ADD ADDRESS OF SENDING FIELD

DAC 10 /STORE IN AI-10

LAM /LOAD A MINUS ONE

TAD RECEVE /ADD ADDRESS OF RECEIVING FIELD

DAC 11 /STORE IN AI-11
SK48A LAC* 10 /LOAD VALUE TO BE MOVED

DAC* 11 /STORE IN RECEIVING FIELD

AND (777) /MASK OFF HIGH ORDER BITS

SAD (.AST) /TERMINATINT AST?

JMP POPJ /YES, RETURN TO CALLER

JMP SK48A /NO, GO BACK TO MOVE MORE

.ENDC

.EJECT

i Figure 2.1
5

TYOW FAOW OL NOVE 09 “ON/
WATIVD OL Nuniad ‘sai/

¢LSV ONILVNIWYAL/

SLIS ¥I@HO HOIY 440 NSVW/
1314 ONIAIZDTY NI FHOLS/
QIAOK 39 OL ANIVA avo1/

IT-IV NI F40LS/

aT14Id 9ONIAIFDIY JO sSTdaav aav/
aNO SNNIW V avo1/

0I-IV NI Jd0LS/

aT1dId ONIGNIS 40 ssTyaav aav/
INO SOANIW V avo1/

TIIH SNUNLTY

JAOW TTVO
HAFOIY

JO¥NO0S LNdNI NO

@'Id1d ONIAIFOAY dJO SSTYaav
aT4I4 ONIANGS 40 SSTIaAGV

:9oN3NDAS ONITIVD
IIJSV @IXOVANN 40 (QuoM ¥3d 2)
aI¥IVd YFHLIT NI QYoM V 40 J4TVH 43ad0 MOT FHL
NI ¥SIYILSY NV HLIM GILVNIWYIL 39 LSNW QIAOW 39 OL
VIVA FHL “YIHIONV OL VIYV IOVHOLS QAT141D3dS INO
WOYd STT3D FTYOW d0 INO FAOW OL ANILNOY V

1o3ra’
0TI E

V8PAS dne
raod dnr
(asv-) avs
{LLL) anv
It «Jva

(1)1 V1

I1 ova
IATDTY avl
W1

o1 ova
3DUN0S avl
W1

JAOW 434 41°

Z°¢ sandty

V8¥iS

=
<)

NN E

8yNS/
JAON/

£9¢TI9
IZPTII9
9¢£S1SS
£LSTIS
110090
0r1002c
T100%0
LIVOYE
LLLLLL
oroovo
91vove
LLLLLL

0l£1S
L9g1S
99¢ 1S
S9E1S
vogIs
£9g1S
OIS
19¢1S
09¢ 1S
LSETS
9SE1S
SSEIS

O

Aruitoxt provided by Eric

E

ie

/TYPE
/SK11

o B N S e

YPE

.iF DEF TYPE
A ROUTINE TO HANDLE THE PRINTING OF MESSAGES ON THE
TELETYPES. THE MESSAGE MUST CONTAIN THE NUMBER OF CHARACTERS
FOR PRINTING IN TH: FIRST BUFFER WORD. PARAMETER LIST
DEFAULTS TO A SUSPENDED PRINT
CALLING SEQUENCE:
SOURCE=BUFFER ADDRESS~15 BITS
CALL TYPE
TTY1 TTY2 OR TTY3-TELETYPE NUMBER EQUIVALENCE
RETURNS HERE

ISZ* STKPIR /INCREMENT RETURN ADDRESS
LAC* PUSHJ3 /LOAD TELETYPE NO.

JMP SK1INT
.ENDC

Figure 2.3

13

/
.IF DEF SK1iINT
SK1INT TAD (-1 /SUBTRACT ONE
DAC SKC27 /STORE OFFSET IN SKC27
TAD SKC25 /ADD MEMAL BASE ADDRESS
TAD (30) /ADD OFFSET TO FIRST PRINT PARAMETER WORD
DAC SKC28 /STORE POINTER IN SKC28
1,AC (33) /LOAD OFFSET TO BAGTEL PARAMETER LIST
TAD SKC25 /ADD MEMAL BASE ADDRESS
DAC SKC29 /STORE IN SKC29
DAC SKC30 /STORE IN SKC30
LAC* SKC28 /LOAD PARAMETER WORD 0
DAC* SKC29 /STORE IN PARAMETER LIST
1S2 SKC29 /INCREMENT POINTER
DZM* SKC29 /ZERG PARAMETER WORD 1
ISz SKC29 /INCREMENT POINTER
LAC SOURCE /LOAD MESSAGE ADDRESS
DAC* SKC2¢9 /STORE IN PARAMETER WORD 2
LAC SKE€30 /RELOAD PARAMETER LIST BASE ADDRESS
TAD (500000) /ADD PRINT COMMAND
EEM /ENABLE EXTEND MODE
DPI /DISABLE API
JMs* TRNVEC /TRANSFER TO SYSTEM ROUTINE - BAGTEL/D-PHONE
SZL /REQUEST ERROR
JMP SK11A /YES-GO PROCESS
JMP POPJ /JNO-RETURN TO CALLER
SK11A LAW 146 /LOAD BASIC ERROR CODE
TAD SKC27 /ADD TELETYPE NUMBER OFFSET
JMP ERROR /GO TO ERROR ROUTINE
.ENDC
.EJECT
Figure 2.4

§°Z 2an31y

JaN3*

INTINS dWr

*ON 3dALITAL Qvo1/ ¢rHsnd *OV1

SSTYAQY NUNLTY INTWTIDONI/ YLAALS #ZSI
TYIH SNUALTY
FONTTVAINDA YIAWIN FJALITIL-SALL 0 ZALL TALL
adil 11V

SLIg ST-SSTIAAY YAL4NE=HNINOS
1IONANDIAS ONITIVD
INI¥d @3AN34SNS V Ol S1Inv4ad
ISIT ¥ALAWVHVd °“QUOM ¥3ddng ISYI4 FHL NI ONILINIUd ¥0d
YILOVIVHD 40 HIEWAN FHL NIVINOD ISNW IOVSSIW THL °SIJALITIL
FHL NO SIOVSSTW 40 ONIININL THL FTANYH O INTINOY V
3dAL 43q 41°

NN

\\\\\\\\E:

1S/
ddAL/

£20TT9
£9v022
T0Y09¢

£9L0S
c9L0S
19408

(-2}

15

9°Z 2an3ty

1oara

JaNT*
INILNOY vodyd oL 09/ e ()} D dnr ¥SLOT9 SS0IS
13S440 ¥IgWN IdALITAL aav/ LZOS avl Zevovs ySOTS
300D Yoy¥d DISvd avol/ op1 Mv1 VIS ovb109L £50TS
YITIVD OL NuNLIY-ON/ rdod dnr 12119 ZSO1S
SSAD04d 02-S3i/ VITIS dwe €S01T9 1S01S
Joyydd 1sandIy/ 1ZS 00VIVL 0S01S
aNCHA-A/TILOVE - ANILNOY WAHLSAS OL dA4SNVIL/ DIANYL Sl eYyozl LYOTS
1dvV F19vsia/ 1dd 10000L 9v01S
HJOW ONZLXT IT19VNI/ W3 Z0LL0L SYO1S
ANVIWWOD ININd aav/ (00000S) avl 25S91S¢ tvors
SSIYAAY ISVE LSIT YALIWVIVd avo1zd/ 0£I)S ov1 SEY00Z e€Y0TS
Z QYOM YALIWVYVd NI FHOLS/ 62I4S M) (1] ¥£v090 ZyoTts
SSTUAAY FIVSSHEW avo1/ 324N0S V1 91$00Z 1v01S
YALNIOd INFWIYONI/ 6ZINS ZSI yevovy 0¥01S
T QoM Y¥ALIWvVIvd 0yaz/ 6ZI4S *Wza yer091 LEOTIS
YIINICd INIWIYONI/ 6204S ZSI yevovy 9¢0TS
LSIT YALIWVIVd NI FHOLS/ 620XS xJVa y<¥090 SEOIS
0 QYoM YILIWVHVd avol/ 82I4S «IV1 e€ev02e y€01S
0£O3S NI Fd0lS/ 0$IXS ova SEYov0 A1) £
6ZO4S NI FyoLSs/ 6248 ova 12320140 ZS01S
SsSTYaay Isvd TVWEW aav/ SZINS avl osyovs 1€01S
ISIT ¥9LIWvYvd T1419vd Ol 13S440 avo1/ (gg) ov1 STLITZ 0g01S
8ZONS NI YAINIOd TdOLS/ 8ZI4S ova £evoyo L201S
QHOM ¥ALIWVYVd INIYd LISYIZ @©F 13S440 aav/ (0g) avl SESTISE 9201S
SSTIAAV ASVE TVWIN aav/ SZONS avl 0SYOvE SZO1S
2223S NI 1L3sdd40 Td01s/ LZI%S ova rAR A1) 4] yZ01S
N0 Lovdldans/ (1-) avl INTTINS 0SSTSE £201S

INTINS 434 d4I°

/
/

10

ERIC

Aruitoxt provided by Eic

"

3.0

USE AND OPERATION OF IMP

3.0 USE AND OPERATION OF IMP

Assembly language programs using IMP must obey a set of
programming conventions governing memory allocation, subroutine calls,
communication with IMP, the naming of routines and variables, and
error handling. These conventions defime the interface between the
user program and IMP as well as ensure that user programs are fully
reentrant. Since the LRDC Time-Sharing System is net a swapping
system, memory is used most efficiently if user programs are reentrant,
and many of the features of IMP were developed to meet this requirement.

In a reentrant program, pure executable code is shared and
executed by more than one user. However, each user's program variables,
subroutine returns, and user-specific data must be isolated and
protected from that of other users. Two memory allocation schemes
are provided by the LRDC/TSS for this purpose. In the first, a block
of memory called COMMON is shuffled to and from lower core by the
time-sharing system. Each user has his own copy of COMMON, and this
is restored to its proper place by the system immediately prior to
the user's execution. The COMMON block begins at location 4008 of
each 8K field and must not exceed 1000 words in length. Since this
area is protected by the system, program variables stored in COMMON
may be directly addressed by reentrant programs, simplifying
programming.

The second scheme is called MEMAL, or MEMory ALlocation. A
portion of each field of memory is reserved as a pool of available
space which may be allocated on demand to any user executing within
that field. A user who requires space calls the system routine MEMAL,
specifying the number of contiguous locations desired. If space is
available, MEMAL returns to the user with the address of the
allocated memory block. Since each user executing the reentrant
program makes a separate call upon MEMAL, a different memory block is
allocated to each user, which ensures that information stored in MEMAL-

obtained space is protected from inter-user interference. Because

11

18

the address of the MEMAL block is not known when a program is

written, the address must be stored as a protected variable in COMMON.
To access a particular location in the MEMAL space, the reentrant
program must add a displacement value to the MEMAL base address in
order to compute the actual address.

Both COMMON and MEMAL are supported and used by IMP. To obtain
COMMON space, the user calls the general initialization routine,
LOGON (see 4.2.1 LOGON for details). Of the total space requested,
locations 4008 through 4708 always are reserved for use by IMP for
the storage of subroutine returns and special IMP variables.

Subroutine returns are stored in COMMON in a push-down stack
maintained by the IMP routines PUSHJ and POPJ. Programs using IMP
do not use the normal JMS instruction, but call PUSHJ, specifying the

address of the subroutine:

JMS PUSHJ
SUBR

PUSHJ computes the subroutine return address, adds it to the top of
the push-down stack, and transfers control to the user subroutine.
To return to the caller, the subroutine transfers control to the IMP

routine POPJ:

JMP POPJ /EXIT FROM SUBROUTINE

POPJ removes the top-most entry from the subroutine stack, stores it
as the return address, "pops" the stack upward, and transfers control

to the return address. Subroutines may be nested as deeply as there

12

are available entries in the push-down stack. At LRDC, a maximum
stack size of 10 has proved to be adequate for even the most complex
CAI program.

To simplify programming, IMP provides two macros which expand
into calls upon PUSHJ and POPJ. To call a subroutine, the user

writes:

CALL SUBR /CALL TO SURROUTINE

- /POINT OF RETURN

This is expanded by the assembler into:

- -

CALL SUBR /CALL TO SUBROUTINE
GEN* JMS PUSHJ
GEN* SUBR

---- /POINT OF RETURN

To return from a subroutine, the user writes RETURN:

-

RETURN /EXIT FROM SUBROUTINE

This is expanded into:

v - -

RETURN /EXIT FROM SUBROUTINE
GEN* JMP POPJ
These macros are provided for convenience only, and direct calls to
PUSHJ and POPJ are permissable.

13

The PUSHJ/POPJ routines provide two primary benefits. The
writing of reentrant programs is facilitated since subroutine returns
are automatically stored and protected in COMMON. Secondly, the push-
down stack provides a partial trace of program flow which is useful
when debugging. Through an examination of the contents of the push-
down stack, programmers are often able to quickly locate bugs or
points of difficulty.

Two other stack manipulation routines are available in the IMP
package. The routine PARAM allows a subroutine to retrieve a
parameter located immediately after the call, and also, to properly
adjust the return address in the push-down stack. STEPUP merely
advances the return address a specified number of locations. Full
details on these routines can be found in sections 4.1.2 PARAM and
4.1.3 STEPUP.

In addition to subroutine returns, 4 number of key IMP variables
are located in COMMON where they may be directly addressed. These
variables are the primary means of communication between a user
program and IMP and have been assigned unique names which identify
their function or purpose. For example, %he IMP routine DIVIDE
expects to find the dividend and divisorfin the variable locations
called SOURCE and RECEVE. DIVIDE returns to the caller with the
cations ANSWER and REMAIN.

Users are discouraged from using these IMP variables for any

quotient and remainder in #he variable lc

purpose other than to communicate with IMP. IMP makes internal use
of many of these varisbles as temporwary @ord space to reduce its
COMMON requirement. The current versiongof IMP reserves only 10% of
the available COMMON space so that users should not be forced to use
these IMP variables because of space limitations.
The IMP variables and their major functions are:
ADRESS -~ returns addresses calculated by IMP
ANSWER -- returns subject responses or the most

significant digits of a numeric answer

14

CONTEN returns the contents of a specified
MEMAL location
RECEVE -- passes to IMP the second value to be
used in a calculation or the second
parameter for an I/0 routine
REMAIN -- returns the least significant digits of
a calculation
SLIDE -- passes a projector slide number to the
projectoxr toutine LOCATE
SOURCE -- used as an input parameter o most IMP
routines for a variety of purposes
TIME -- returns time-of-day or response latency
In addition to COMMON, IMP supports MEMAL and provides routines
to acquire, store data in, and retrieve data from MEMAL space. The
IMP routine DEFINE acquires and names blocks of space up to the
total amount availablie in the MEMAL pool. (See 4.2.2 DEFINE for full
details.) The routine FIND locates a named location in MEMAL space
and returns its address and contents to the caller. STORE allows
the user to deposit a value in a named MEMAL location. These
routines greatly simplify programming by computing the actual address
from a MEMAL block base address and a displacement value. (See 4.2.3
FIND and 4.2.4 STORE for full details.)
Program error detection and handling is another feature of the
IMP package. With the one exception of the routine DISK, all errors
detected by IMP are passed to the IMP error handler, ERROR. ERROR
calls the system error routine SYSERR with a unique error code which
is printed on the operator's console. The user's program is then
placed in an inactive state pending operator intervention. Errors
detected by the routine DISK often indicate 'normal" conditions such
as end-of-file and are returned to the user prograzm rather than
passed to ERROR. Error codes returned by the DISK routine are
described in section 4.3.24 DISK. All IMP error codes are listed in

Appendix C.

Q 15

29

4.0

IMP ROUTINES

29

4.1

SUBROUTINE CALL ROUTINES

24

4.0

IMP ROUTINES

4.1

SUBROUTINE CALL ROUTINES

4.1.1

PUSHJ/POPJ
4.1.1.1 FUNCTION

PUSHJ and POPJ are used to call
subroutines and return from them. Instead of
directly calling a subroutine, the user passes
the subroutine address to PUSIIJ. PUSIJ
determines the origin of the call, stores the
return address in a push-down stack, and passes
control to the subroutine. When the user desires
to return from the subroutine, POPJ is called,
which 'pops-up' the push-down stack and passes
control to the address at the top of the stack.
The push-down stack is currently 10 deep so
subroutines may be nested to that depth.

Within IMP, two macros using PUSHJ
and POPJ have been defined to simplify
programming. The macro "TCALL' has the subroutine

address as a single argument as follows:
CALL SUBROUTINE

This macro expands in the following

form:

JMS PUSHJ
SUBROUTINE

The macro 'RETURN' has no arguments

and expands into:

JMP POPJ

16

4.1.1.2 CALLING SEQUENCE
4,1.1.2.1 PARAMETERS
The subroutine address is
the only parameter rcquired.
4.1.1.2.2 CALL
CALL ROUTINE
4,1.1.2.3 NORMAL RETURN
Control is returned to the
location following the call.
4.1.1.2.4 ERROR RETURN
Type 1 SYSERR codes:
163 -- Stack overflow -
PUSHJ
164 -- Stack underflow -
POPJ
4.1.1.2.5 RESTRICTIONS
a. The PUSHJ 'STACK' must
be initialized with the 'RESET' macro.
b. The user may not nest
more than 10 routines deep.
c. Every 'CALLed' routine
must be exited by a '"RETURN' statement.
d. User macrc definition
must be present in the user's card
deck before 'RESET', 'CALL' or
'RETURN' macros are encountered.
4.1.1.3 EXAMPLE
To set up the PUSHJ STACK and call a
routine, °"SUBRTN'
RESET /MACRO TO SETUP STACK
/ASSEMBLER GENERATED CODE
/ASSEMBLER GENERATED CODE
/ASSEMBLER GENERATED CODE

17

CALL SUBRTN /CALL USER SUBRTN
GEN JMS PUSHJ /ASSEMBLER GENERATED CODE
GEN SUBRTN /ASSEMBLER GENERATED CCDE
/RETURN IS MADE HERE PROVIDED
/THAT SUBRTN IS EXITED BY
/'JMP POPJ'

18

277

4.1.2 PARMM
4,1.2.1 FUNCTION
PARAM enables the user to retrieve
one in-line parameter from the point of a
subroutine call,
4,1.2.2 CALLING SEQUENCE °
4.1.2.2.1 PARAMETLRS
None
4,1.2.2.2 CALL
Call PARAM
4,1.2,2.3 NORMAL RETURN
PARAM returns to the next
location after the call with the
parameter: CONTEN = In-line parameter
from calling routine.
4.1.2.2.4 LCRROR RETURN
' None
4.1.2.3 EXAMPLE
To pick up an in-line parameter needed
by a subroutine called SUBRTN:
4
CALL SUBRTN /JCALL 'SUBRTN'
3 /IN-LINE PARAMETER
i
4
SUBRTN CALL PARAM /'SUBRTN' CALLS PARAM TO GET
/IN-LINE PARAMETER
LAC CONTEN /CONTEN CONTAINS IN-LINE'PARAMETER

-/

19

4.1.

3

STEPUP

4,1.3.1 FUNCTION
STEPUP enables the user to modify or

'STEPUP' a subroutine return address up to five

locations.

4,1.3.2 CALLING SEQUENCE

4.1

.3.2.1 PARAMETERS

AC = Number of locations

to STEPUP return
4.1.3.2.2 CALL

Call STEPUP

4.1.3.2.3 NORMAL RLTURN

STEPUP returns to the

lecation following the call.
4.1.3.2.4 ERROR RETURN

Type 1 SYSERR code:
172 -- STEPUP value outside
range 1 - 5

4.1.3.3 EXAMPLE
To return three locations beyond the

normal return for a subroutine, code:

1.
2.

%
e

LAC (3)
CALL STEPUP
RETURN

20

29

4.2

MEMORY ALLOCATION ROUTINES

4.2 MEMORY ALLOCATION ROUTINES
4.2,1 LOGON
4.2,1.1 TUNCTION
LOGON is responsible for program
initialization and does the following:
a. Acquires COMMON space.
b. Sets a transfer vector for
Teletype or Dataphone.
c. Zeros MEMAL base pointers.
d. Initializes PUSHJ-POPJ.
e. Initializes key variables for DISK
and DO routines.
4.2.1.2 CALLING SEQUENCE
4.2.1.2.1 PARAMETERS
A cell labeled COMMON must
contain the number of user COMMON cells
desired. (The user's COMMON should
start at FIELD + 470).
4.2.1.2.2 CALL
LOGON or LOGONT (for Teletype)
LOGOND (for Dataphone)
4.2.1.2.3 NORMAL RETURN
LOGON returns to the
location immediately following COMMON
cell (COMMON + 1).
4.2.1.2.4 ERROR RETURNS
None
4.2.1.3 EXAMPLE
To LOGON using Dataphone and obtaining
six COMMON locations:
LOGOND
COMMON ENDCOM - BEGCOM + 1 /6 CELLS COMMON
.LOC FLL' + 470

2}

31

BEGCOM 0 /FIRST COMMON CELL
PTR1 0
CTRL 0
TEMP1 0
SAVEL 0
ENDCOM 0 JLAST COMMON CELL
.LOC COMMON + 1
JRETURNS

22

4.2.2

DEFINE

4.2.2,1 FUNCTION
DEFINE enables the user to obtain

MEMAL space.

4.2.2,2 CALLING SEGQUENCE
4,2.2.2.1 PARAMETERS

One or more in-line

parameters must follow the call on
DEFINE. These parameters terminate
with a FINISH statement. Each in-line
parameter consists 4f a name tag
{col. 1) and the bldck length in octal
(col. 8). 1In-line ﬁarameters
specifying block nanes and their
lengths plus the FINISH parameter are
required. Any reascdnable number of
blocks may be requested, provided the
total number of available MEMAL cells
are not exceeded.
4,2,2,2,2 CALL

CALL DEFINE
4

NAME1 N (N = Lquth of block in
octal)j
NAME2 N
NAME3 N
NAMEX N
FINISH
23

33 ..

4.2.2.3

4,2.2.2.3 NORMAL RETURN

DEFINE returns to the
location following the FINISH statement.
The "N'" values indicated in the
parameters above are changed by DEFINE
to offset values, which give the actual
address when added to the MEMAL base
address. The FIND routine calculates
addresses of named MEMAL buffers.
4,2,2.2.4 ERROR RETURN

Type 0 SYSERR codes:

101 -- MEMAL request size

zero

177 -- MEMAL space exhausted.
EXAMPLE
To obtain a 3008 cell MEMAL area

consisting of three named buffers of 1008 cells

each:

BUFF1
BUFF2
BUFF3

CALL DEFINE /CALL DEFINE ROUTINE

100 /BUFFER 1, 100 CELLS
100 /BUFFER 2, 100 CELLS
100 /BUFFER 3, 100 CELLS
FINISH JEND OF PARAMETERS

/RETURNS HERE

24

4.2.3

FIND
4.2.3.1 FUNCTION

FIND locates a named cell in MEMAL

and returns its address and content to the

caller.

4,2.3.2 CALLING SEQUENCE

4,2.3.2.1

PARAMETERS
The name of the desired

cell is passed as an in-line parameter.

4.2.3.2.2

4.2.3.2.3

CALL

CALL FIND

NAME /NAME OF A CELL
DEFINED IN MEMAL

NORMAL RETURN

FIND returns tc¢ the location

following the call with these parameters:

. ADRESS =

CONTEN

4.2.3.2.4

4.2.3.3 EXAMPLE

Address of the named cell
in MEMAL

Contents of the named cell
in MEMAL

ERROR RETURN

None

To obtain the contents of a MEMAL cell

named VARBL:
CALL FIND /CALL FIND ROUTINE
VARBL /MEMAL CELL NAME

LAC CONTEN /CONTINUE

25

: 4.2.4 STORL
4.2.4.1 TFUNCTION
STORL enables the user to deposit a
value in a named MEMAL cell. STORE is used only
on MEMAL obtained through the DEFINE routine.
4.2.4.2 CALLING SEQUENCE
4.2.4.2.1 PARAMETERS
SOURCE = Value to be stored
In-1ine parameter following
the call naming the cell within MEMAL.
4.2.4,2.2 CALL
CALL STORE
NAME
4.2.4.2.3 NORMAL RETURN
STORE returns to the
location following the MEMAL name
parameter.
4.2.4,2.4 ERROR RETURN
Not applicable.
4.2.4.3 EXAMPLE
To store an asterisk (ASCII 252) in a
MEMAL cell called 'ENDBUF':
LAC (.AST) /LOAD AN ASTERISK
DAC SOURCE /STORE IN SOURCE
CALL STORE /GO TO STORE ROUTINE
ENDBUF /DEFINED CELL NAME
/RETURNS HERE

26

4.2

INPUT/OUTPUT ROUTINES

ay . I~
DI A

4.3

INPUT/OUTPUT ROUTINES

4.3.1

OBTAIN
4.3.1.1

FUNCTION
OBTAIN is used to GRAB I/0 devices.

No more than 12 device types with seven units

per type can be GRABbed in a single call on

OBTAIN.
4.3.1.2

CALLING SEQUENCE
4,3.1.2.1 PARAMETERS

Two 6-digit in-line
parameters are used to indicate the
device types and the nunber of units
per type tc be GRABbed. These
parameter words are broken down as
follows:

Digit Device

Word 1 1 Screen
2 Keyboard
3 Toucit
4 RA 950 Projector
5 Teletype/Dataphone
6 Crow
Word 2 1 Punch
2 Line Printer
3 To be assigned
4 To be assigned
5 To be assigned
6 To be assigned
4.3.1.2,2 CALL
CALL OBTAIN (IMPORTANT:
Both parameter words must be present,

even if they are zero.)

27

Parameter 1
Parameter 2
4.3.1.2.3 NORMAL RETURN
OBTAIN returns to the
location following the second
parameter in the call.
4.3.1.2.4 ERROR RETURN
Type 1 SYSERR codes:
100 -- GRAB error - Screen
101 -- GRAB error - Keyboard
102 -- GRAB error - Touch
103 -- GRAB error - Projector
104 -- GRAB error - Teletype/Dataphone
105 -- GRAB eryor - Crow
106 -- GRAB error - Punch
107 -- GRAB error - Printer
110 -- To be assigned
111 -- To be assigned
112 -- To be assigned
113 -- To be assigned
4.3.1.3 EXAMPLE
To grab 1 touch-sensitive, 2 projectors,

1 teletype, and 1 crow:

CALL OBTAIN /CALL OBTAIN ROUTINE FOR
001211 /1 TOUCH, 2 PROJECTORS

1 TELETYPE
000000 /AND 1 CROW

/RETURNS HERE

28

4.3,2 RELESE
4.3.2.1 FUNCTION
RELESE returns to the LExecutive systems
those I/0 devices which have been "GRABbed" by
the job (see OBTAIN for device GRABs). Up to 12
device types and seven units of each type may be
released.
4.3.2.2 CALLING SEQUENCE
4.3.2.2.1 PARAMETERS
As in the OBTAIN routine,
two 6-digit octal in-line parameter
words indicate which devices are to be
veleased. The parameter word structure
is as follows:
Digit Associated Device
~CRT Screen

Word 1 1
2 Keyboard
3 Touch Sensitive
4 Projector
5 Teletype/Dataphone
6 Crow
Word 2 1 Paper Tape Punch
2 Line Printer
3 Presently unassigned
4 Presently unassigned
5 Presently unassigned
6 Presently unassigned
4.3.2.2.2 CALL
CALL RELESE
WORD 1
WORD 2
(IMPORTANT: Both parameter words must

be present, even if they are zero.)

29

40

4.3.2.2.3 NORMAL RETURN

RELESE returns to the
location following parameter Word 2.
4.3.2.2.4 ERROR RETURN

Type 1 SYSTERR codes:
114 -~ Release Error - Screen

115 -- Release Error - Keyboard

116 -- Release Error - Touch

117 -- Release Error - Projector

120 -- Release Error - TTY/DATAPHONE
121 -- Release Error - Crow

122 -- Release Error - Punch

123 -- Release Error - Printer

124 -- To be assigned
125 -~ To be assigned
126 -- To be assigned
127 -- To be assigned
4.3.2.3 EXAMPLE
To release 1 Touch, 2 Projectors,
1 Teletype, 1 Crow, and 1 Paper Tape Punch:
CALL RELESE /GO TO RELEASE ROUTINE
001211 /PARAMETER WORD 1
100000 /PARAMETER WORD 2
/RETURNS HERE

30

4.3.3 SETUP

4.3.3.1 FUNCTION
SETUP creates parameter lists for all
the devices that can be GRABbed by the OBTAIN
routine. The parameter lists are set up in the
most commonly used format. However, the user
can alter the parameter lists if necessary (see
EXCEPT routine documentation).
4,3.3.2 CALLING SEQUENCE
4.3.3.2.1 PARAMETERS
FINISH
NOTE: Detailed information
concerning parameter lists can be found
in the documentation of peripheral
equipment routines.
4.3.3.2.2 CALL
CALL SETUP
FINISH
4.3.3.2.3 NORMAL RETURN
SETUP returns to the
location following the parameter
FINISH.
4.3.3.2.4 ERROR RETURN
Type 1 SYSERR code:
171 -- no "FINISH"
parameter
4.3.3.3 EXAMPLE
To create standard parameter lists:
CALL SETUP /ESTABLISH PARAMETER LISTS
FINISH /WITH NO CHANGES
/RETURNS HERE

31

s 9%

3

4.3.4

EXCEPT
4.3.4.1

FUNCTION
EXCEPT modifies the parameter lists

created by the SETUP routine.

4.3.4.2

CALLING SEQUENCE
4.3.4.2.1 PARAMETERS
Three parameters are
required for each change.
Parameter 1 ~-- Device number *
Parameter 2 -- Parameter list word
number to be replaced
Parameter 3 -- The parameter word to
be inserted
*Device numbers are the same as those
shown in the CENTRAL EXECUTIVE
documentation.
NOTE: Detailed information concerning
parameter lists can be found in the
documentation of peripheral equipment
routines.
4.5.4.2.2 CALL
The call on EXCEPT must
appear between the call on SETUP and
its parameter FINISH (see Example).
CALL SETUP
EXCEPT
A
B
C
FINISH

32

4.3.4.3

4.3.4.2.3 NORMAL RETURN

EXCEPT returns to the
location following the word FINISH.
4.3.4.2.4 ERROR RETURN

Type 1 SYSERR code:

165 -~ Unknown device

number

171 -~ No FINISH parameter
EXAMPLE
To set up parameter lists and alter

the teletype list to enable the unit to be

treated as a half-duplex unit:
CALL SETUP /FIRST, CREATE PARAMETER LISTS

EXCEPT
23

1
200001
FINISH

/CHANGE FOLLOWS

/TELETYPE DEVICE NUMBER
/FIRST WORD IN PARAMETER LIST
/NEW PARAMETER

/ALL PARAMETER WORD DONE
/CONTINUE

33

4.3.5

DISPLA
4.3.5.1

FUNCTIOM i
DISPLA enables the user to project a

text string on the CRT pCREEN.

4.3.5.2

CALLING SEQUENCE
4.3.5.2.1 PARAMETERS

The message address and the
character size must be specified. The
first word of the text must contain the
length (number of characters in octal),
followed by the message text in packed
ASCII, two characters per word.
SOURCE = text address

An in-line parameter
following the call must indicate the
character size to be displayed. (see
""'SCREEN CHARACTER SIZE CHART, APPENDIX
E, for details)
4.3.5.2.2 CALL

SOURCE = TEXT ADDRESS

CALL DISPLA

CHARACTER SIZE
4.3.5.2.3 NORMAL RETURN

DISPLA returns to the
location following the character size

parameter. NOTE: The first cell of

- the text string (length cell) is

altered prior to return.
4.3.5.2.4 ERROR RETURN
Type 1 SYSERR code:
130 -- request error -
SCREEN

34

4.3.5.3 EXAMPLE
To display a message labeled MSG1 on
the SCREEN using character size 4:
LAC (MSG1) /LOAD ADDRESS OF MSG1
DAC SOURCE /STORE IN SOURCE
CALL BISPLA /GO TO DISPLA ROUTINE

4 /CHARACTER SIZE 4
/RETURNS HERE
MSG1l 14 /MSG LENGTH (OCTAL)
323303 /S -C
322305 /R - E
305316 /JE -~ N
240324 / -T
305323 /E - S
324256 /T - .
35

16

4.3.6

SHOLET
4.3.6.1

FUNCTION
SHOLET displays a single character on

the screen.

4.3.6.2

4.3.6.3

CALLING SEQUENCE
4.3.6.2.1 PARAMETERS

SOURCE = Character to be
displayed.
Character size (see SCREEN CHARACTER
SIZE CHART)
4.3.6.2.2 CALL

CALL SHOLET

CHARACTER SI2E
4.3.6.2.3 NORMAL RETURN

SHOLET returns to next
location following the call.
4.3.6.2.4 ERROR RETURM

Type 1 SYSERR code:

130 -- Screen request error
EXAMPLE
To display the letter "B' on the screen:

LAC (302) /LOAD THE ASCII CODE FOR '"B"
DAC SOURCE /PUT IT IN SOURCE
CALL SHOLET /CALL SHOLET ROUTINE

4

/SCREEN SIZE 4
/CONTINUE

/

36

R

4.3.7

ERASE
4.3.7.1 FUNCTION
ERASE enables the user to erase the
CRT SCREEN.
4.3.7.2 CALLING SEQUENCE
4.3.7.2.1 PARAMETER
None
4.3.7.2.2 CALL
CALL ERASE
4.3.7.2.3 NORMAL RETURN
ERASE returns to the
location following the call.
4,3.7.2.4 ERROR RETURN
Type 1 SYSERR code:
130 -- request error -
SCREEN
4.3.7.3 EXAMPLE
To erase a CRT SCREEN:
CALL ERASE /GO TO ERASE SCREEN
/RETURNS HRRE

37

48"

4.3.8 SKIP

4.3.8.1 FUNCTION

SKIP enables the user to skip down a
specified number of lines on the CRT SCREEN.
4.3.8.2 CALLING SEQUENCE

4.3.8.2.1 PARAMETERS

VARBL = number of lines to
skip (octal). An in-line parameter

specifies the address of the user's

VARBL.

4.3.8.2.2 CALL
CALL SKIP
VARBL

4.3.8.2.3 NORMAL RETURN
SKIP returns to the
location following the in-line
VARBL parameter.
4,3.8.2.4 ERROR RETURN
Type 1 SYSERR code:
130 -- request error -
SCREEN
4,3.8.3 EXAMPLE
To skip down six lines from the
current position:
LAC (6) /LOAD LINE COUNT (6)
DAC VARBL /STORE IN USER VARIABLE
CALL SKIP /GO TO SKIP ROUTINE
VARBL /PTR TO REPETITION CELL
/RETURNS HERE

38

4.3.9 BACKUP
4.3.9.1

left-most
4.3.9.2

4.3.9.3

FUNCTION
BACKUP returns the cursor to the
side of the screen.
CALLING SEQUENCE
4,3.9.2.1 PARAMETERS
None
4,3,9.2.2 CALL
CALL BACKUP
4.3.9.2.3 NORMAL RETURN
BACKUP returns to the
location following the call.
4.3.9.2.4 ERROR RETURN
Type 1 SYSERR code:
130 ~- Screen request error
EXAMPLE
To return the cursor to the left-most

side of the screen:
CALIL. BACKUP J/CALL BACKUP ROUTINE

/RETURNS HERE

39

4.3.10 SPACE
4.3.10.1 FUNCTION
SPACE gives the user the facility to
display one or more spaces on the screen in a
single call.
4.3.10.2 CALLING SEQUENCE
4.3.10.2.1 PARAMETERS
Desired number of spaces in
some user-specified cell.
4.3.10.2.2 CALL
CALL SPACE
VARBL -- Address of cell
contadming number of spaces.
4.3.10.2.3 NORMAL RETURN
SPACE returns to the
location following the call.
4.3.10.2.4 ERROR RETURN
Type 1 SYSERR code:
130 -- Screen request error
4.3.10.3 EXAMPLE
To display four spaces on the screen:
LAC (4) /LOAD A 4
DAC VARBL /PUT IT IN USER'S CELL
CALL SPACE /CALL SPACE ROUTINE
VARBL /ADDRESS OF NUMBER OF SPACES
/RETURNS HERE

40

4.3.11 REAKDY
4.3.11.1

subject's

FUNCTION
READKY monitors a keyboard for a

response. The monitoring time limit

is defined by the user.

4.3.11.2

4.3.11.3

LAC (5)

CALLING SEQUENCE
4.3.11.2.1 PARAMETERS

Monitoring time-limit in
seconds in a user-specified cell.
4,.3.11.2.2 CALL

CALL READKY

VARBL -- Address of time
limit cell.
4.3.11.2.3 NORMAL RETURN

READKY returns to the
location following the call. The
following parameter is returned:
ANSWER = ZERO -- NO RESPONSE

400000 -- PARITY ERROR
OTHER -- ASCII RESPONSE

4.3.11.2.4 ERROR RETURN

Type 1 SYSERR code:

131 -- Keyboard request

error
EXAMPLE
To monitor the keyboard for 5 seconds:
/LOAD TIME LIMIT

DAC VARBL /STORE IN TIME LIMIT CELL

CALL READKY /CALL READKY ROUTINE

VARBL

/ADDRESS OF TIME LIMIT CELL

LAC ANSWER /RETURNS HERE

41

4.3.12 TUCH
4.3.12.1 FUNCTION
TUCH monitors the touch-sensitive
surface for a subject's response. The user
defines the monitoring time-limit.
4.3.12.2 CALLING SEQUENCE
4.3.12.2.1 PARAMETERS
VARBL = number of seconds
delay
4.3.12.2.2 CALL
CALL TUCH
VARBL
4.3.12,2.3 NORMAL RETURN
TUCH returns to the
location after the call with following
parameter:
ANSWER = ZERO -- NO RESPONSE
400000 -- PARITY ERROR
OTHER -- WINDOW NUMBER OF
TOUCH (1-120,)
4.3.12.2.4 ERROR RETURN
Type 1 SYSERR code:
132 -- Executive System
request error
4.3.12.3 EXAMPLE
To monitor the touch-sensitive surfadce
for five seconds:
LAC (5) /LOAD 5 SECONDS
DAC DELAY /STORE IN DELAY CELL
CALL TUCH /CALL TOUCH ROUTINE
DELAY /ADDRESS OF TIME DELAY
LAC ANSWER /LOAD RESULTS AND CONTINUE

42

4.3.13 LOCATE
4.3.13.1 FUNCTION
LOCATE is used to position a slide on
a RA-950 projector.
4.3.13.2 CALLING SEQUENCE
4.3.13.2.1 PARAMETERS
SLIDE = Desired slide
number (1-1208)
Projector number = PROJ1

or PROJ2
4.3.13.2.2 CALL
CALL LOCATE
PROJ1 or PROJ2 /LOGICAL

UNIT #
4.3.12.2.3 NORMAL RETURN
LOCATE returns to the
location following the call.
4.3.13.2.4 ERROR RETURN
Type 1 SYSERR code:
142 -- Projector 1 request
error
143 -- Projector 2 request
error
4.3.13.3 EXAMPLE
To position slide 4 on Projector 1:
LAC (4) /LOAD SLIDE NUMBER
DAC SLIDE /STORE IT IN THE IMP CELL
CALL LOCATE /CALL THE LOCATE ROUTINE
PROJ1 /FOR PROJECTOR 1
/RETURNS HERE

43

4.3.14 LITON
4.3.14.1

light.
4.3.14.2

4.3.14.3

CALL LITON

PROJ2

FUNCTION

LITON turns on the slide projector

CALLING SEQUENCE

4.3.14.2.1

or PROJ2
4.3.14.2.2

4.3.14.2.3

PARAMETERS
Projector number -- PROJ1

CALL

CALL LITON

PROJ1 /LOGICAL UNIT #
NORMAL RETURN

LITON returns to the

location following the call.

4.3.14.2.4

EXAMPLE

ERROR RETURN

Type 1 SYSERR ccde:

142 -- Projector 1 request
error

143 -~ Projector 2 request

error

To turn on the light in projector 2:°

/CALL LITON ROUTINE

/FOR PROJECTOR 2
/RETURNS HERE

44

4.3.15 LITOFF
4.3.15.1

specified
4.3.15.2

4.3.15.3

XD

FUNCTION
LITOFF enables the user to turn off a
projector light.
CALLING SEQUEMNCE
4,3.15.2.1 PARAMETERS

The projector number is
specified by an in-line parameter.
The IMP defined symbols PROJ1 or
PROJ2 may be used.
4.3.15.2.2 CALL

CALL LITOFF

PROJ1 -- Projector Number
4.3.15.2.3 NORMAL RETURN

LITOFF returns to the
location following the projector
number parameter.
4.3.15.2.4 ERROR RETURN

Type 1 SYSERR codes:

142 -- Request error -

Projector 1
143 -- Request error -
Projector 2

EXAMPLE
To turn the light off on projector 1:

CALL L. (OFF /GO TO LITOFF ROUTINE

PROJ1

/REFERENCE PROJECTOR 1
/RETURNS HERE

45

4.3.16 TYPE
4.3.16.1 FUNCTION
TYPE prints a multi-character
message on a teletype or dataphone teletype.
4.3.16.2 CALLING SEQUENCE
4.3.16.2.1 PARAMETERS
The first word of the
message to be typed must contain the
message length {(number of characters
in octal). The message text should
be in packed ASCII, SOURCE =
message address.
An in-line parameter
following the call must indicate
the unit being referenced.
4.3.16.2.2 CALL
SOURCE = Message Address
CALL TYPE
TTY1l -~ Logical Unic #
4,3.16.2.3 NORMAL RETURN
TYPE returns to the
location following the teletype
number parameter.
4.3.16.2.4 ERROR RETURN
Type 1 SYSERR codes:
146 -- Request Error -
TELETYPE 1

147 -- Request Error -
TELETYPE 2

150 -- Request Error -
TEL=TYPE 3

46

4.3.16.3 EXAMPLE

To type a message called MSG1 on

teletype 1:

LAC (MSG1)
DAC SOURCE

CALL TYPE
TTY1

MSGl 12
324331
320305
240324
305323
324256

47

/LOAD ADDRESS OF MSG1
/STORE IN SOURCE

/GO TO TYPE ROUTINE
/TYPE MSG ON TTY1
/RETURNS HERE

/MSG LENGTH (OCTAL)
/T~ Y

/P - E
/ -T
/E - S
/T -~ .

08:

4.3.17 TYPKEY
4.3.17.1 FUNCTION

TYPKEY types a single character on

the teletype.
4.3.17.2 CALLING SEQUENCE

4.3.17.2.1 PARAMETERS
SOURCE = Character to be

typed

Teletype number -- TTY1,
TTY2, or TTY3

4.3.17.2.2 CALL

CALL TYPKEY

TTY 1

/LGGICAL UNIT #

4.3.17.2.3 NORMAL RETURN
TYPKEY returns to the

location following

th¢ call.

4,3.17.2.4 ERROR RETURN

Type 1
146 --

147 --

150 --

4.3.17.3 EXAMPLE
To type the letter

SYSERR codes:
Teletype 1 request
error

Teletype 2 request
error

Teletype 3 request

error

"A" on Teletype

number 2:
LAC (301) /LOAD AN ASCII "A"
DAC SQURCE /PUT IT IN SOURCE
CALL TYPKEY /CALL TYPKEY ROUTINE
TTY?2 /FOR TTY2

/RETURNS HERE

48

4.3.18 SPACEB
4.3.18.1 FUNCTION
SPACEB enables the user to print one
ar more blank spaces on the teletype with a
single call.
4.3.18.2 CALLING SEQUENCE
4.3.18.2.1 PARAMETERS
The number of spaces to be
printed. Teletype number -- TTYl,
TTY2, or TTY3
4.3.18.2.2 CALL
CALL SPACEB
TTY1 /LOGICAL UNIT #
VARBL -~ Address of cell
contairing number of
spaces
4.3.18.2.3 NORMAL RETURN
SPACEB returns to the
location following the call.
4.3.18.2.4 ERROR RETURN
Type 1 SYSERR codes:
146 -~ Teletype 1 request
error
147 -- Teletype 2 request
error
150 -~ Teletype 3 request
error
4.3.18.3 EXAMPLE
To generate six spaces on Teletype 1:
LAC (6) /LOAD NUMBER OF SPACES DESIRED
DAC VARBL /STORE IT IN USER-DEFINED CELL
CALL SPACEB /CALL SPACEBAR ROUTINE

49

TTY1 /TELETYPE NUMBER

VARBL /ADDRESS OF CELL CONTAINING
NUMBER OF REPETITIONS
/RETURNS HERE

50

4.3.19 FEED
4.3.19.1

on a user
teletype.
4.3,19.2

FUNCTION
FEED prints one or more linefeeds

specified teletype or dataphone

CALLING SEQUENCE
4.3.19.2.1 PARAMETERS

A user variable must
contain the number of linefeeds
desired. The tecletype unit number
must be specified.

VARBL = number of
repetitions (octal). The teletype
unit number 1, 2, 3. (IMP defined
TTY1l, TTY2, or TTY3 may be used.)
4.3.19.2.2 CALL

CALL FEED

TTYN /LOGICAL UNIT #

VARBL -- Address of cell

containing linefeeds
4.3.19.2.3 NORMAL RETURN

FEED returns to the
location following the teletype
nurber parameter.
4.3.19.2.4 ERROR RETURN

Type 1 SYSERR codes:

146 -- Request error -
TELETYPE 1

147 -- Request error -
TELETYPE 2

150 -- Request error -
TELETYPE 3

51

[

4.3.19.3 EXAMPLE
To output six linefeeds on Teletype 2:
LAC (6) /LOAD REPETITION COUNT
DAC VARBL /STORE IN USER VARIABLE
CALL FEED /G0 TO FEED ROUTINE

TTY2 /TELETYPE NUMBER
VARBL /CELL CONTAINING REPETITION
/COUNT

/RETURNS HERE

52

4.3.20

GETKEY
4.3.20.1

specified
4.3.20.2

FUNCTION
GETKEY monitors a teletype for a user
time period.
CALLING SEQUENCE
4,3.20.2.1 PARAMETERS

VARBL = Time delay in full

seconds (octal)

The teletype unit number
1, 2, or 3 must be specified. (IMP
defined TTY1, TTY2, or TTY3 may be
used.)
4.3.20.2.2 CALL

CALL GETKEY

TTY) /LOGICAL UNIT #
VARBL -- Address of cell
containing time delay

4,3.20.2,3 NORMAL RETURN

GETKEY returns with the
parameter answer to the location
following the VARBL parameter.
ANSWER = Zero indicates no response
was made.
4.3.20.2.4 ERROR RETURN

Type 1 SYSERR codes:

146 -- Request error -
TELETYPE 1

147 -- Request error -
TELETYPE 2

150 -- Request error -
TELETYPE 3

53

A
e 2

4.3.20.3 EXAMPLE
To activate Teletype 1 wait 10 seconds

for a response:

LAC (12) /LOAD 10 SEZONDS TIME DELAY
DAC VARBL /STORE IN USER VARIABLE
CALL GETKEY /GO TO GETKEY ROUTINE

TTY1 /MONITOR TTY1

VARBL /CELL CONTAINING TIME DELAY

LAC ANSWER /LOAD RESPONSE AND CONTINUE

54

4.3.21 MUMBLE
4.3.21.1 FUNCTION
MUMBLE plays a specified message or
messages on a CROW random-access audio unit.
4.3.21.2. CALLING SEQUENCE
4.3.21.2.1 PARAMETERS
SOURCE - Message stack
address
NOTE: The message stack nmust contain
no more than five message parameters.
The stack must be terminated with an
asterisk. (See system documentation
.2.CROW for detailed information on
message parameters.)
4.3.21.2.2 CALL
SOURCE = Message stack
address
CALL MUMBLE
4.3.21.2.3 NORMAL RETURN
MUMBLE returns to the
location following the call.
4.3.21.2.4 ERROR RETURN
Type 1 SYSERR codes:
133 -- JPEAK request
error
156 -- Attempt to stack
more than five
message parameters

55

66

4.3.21.3 EXAMPLE
To play
CROMES :
LAC (CROMES)
DAC SOURCL
CALL MUMBLE

56

the audio message labeled

JLOAD MESSAGE STACK ADDREES
JSTORE IT IN SOURCE

/CALL MUMBLE

/RETURNS HERE

|

4.3.22 PUNCHO
4.3.22.1 FUNCTION
PUNCHO punches a user-specified buffer
on paper tape. Unless otherwise specified, the
buffer is punched in alphanumeric mode (ASCII).
4.3.22.2 CALLING SEQUENCE
4.3.22.2.1 PARAMETERS
SOURCE = Buffer address
4.3.22.2.2 CALL
CALI, PUNCHO
4,3.22.2.3 NORMAL RETURN
PUNCHC returns to the
location following the call.
4.3.22.2.4 ERROR RETURN
Type 1 SYSERR code:
134 -- Punch request error
4.3.22.3 EXAMPLE
To punch a buffer labeled "PBUFF":
LAC (PBUFF) /LOAD THE BUFFER ADDRESS

DAC SOURCE /STORE IT IN SOURCE
CALL PUNCHO /CALL PUNCHOUT ROUTINE
. /CONTINUE
. /
57

4.3.23 PRINT
4.3.23.1 FUNCTION
PRINT is used to print a buffer on the
line printer. 4 maximum of 120 characters may
be printed per line.
4.3.23.2 CALLING SEQUENCE
4.3.2%.2.1 PARAMETERS
SOURCE = Buffer address
One of the following forms-
contrcl parameters must be included in
each cali on PRINT: TOF - Top-of-form
SINGLE ~-- Single space after printing
DOUBLE -~ {iouble space after printing
TRIPLE -~ Triple space after printing
4.3.23.2.2 CALL
CALL PRINT
FORMS CONTROL PARAMETER
4.3.23.2.3 NORMAL RETURN
PRINT returns to the
location following the call.
4.3.23.2.4 ERROR RETURN
Type 1 SYSERR code:
135 -~ Printer request
error

58

4.3.23.3 EXAMPLE
To print a buffer labeled '"PRTBUF'",

specifying triple spacing:

LAC (PRTBUF) /LOAD BUFFER ADDRESS
DAC SOURCE /PUT IT IN SOURCE
CALL PRINT /CALL PRINT ROUTINE
TRIPLE /TRIPLE SPACING

. /CONTINUE

59

4.3.24 DISK

4.3.24.1 FUNCTION

DISK enables the user to interact with
the system Disk File Management System (DISKUS).
The user should become familiar with DISKUS before
attempting to use the IMP DISK rcutine.
4.3.24.2 CALLING SEQUENCE

4.3.24.2.1 PARAMETERS

Certain operations require
that the AC be initialized prior to the
call. This is true in the CREATE, BACK,
FORWARD, READ, WRITE and WREOF functiors.
AC = (CREATE) desired record length

(octal)
(BACK) number of records to
backspace (octal)
(FORWRD) number of records to
skip forward (octal)
(READ) address into which data is
to be read
(WRITE) Address from which data is
to be written
(WREOF) address from which data is
to be written
In all other operations, the contents
of the AC are ignored.

In-line parameters (all
operations): Immediately following the
call, the operation to be executed must
be specified. The following IMP defined

equivalences may be used:

60

CREATE (1) -- Create new file
OPEN (2) -- Open old file
CLOSE {3) == Close file
DELETE (4) -- Close and delete

file
BACK (5) -- Backspace record(s)
FORWRD (6) -- Skip forward
record(s)
READ (7) -- Read one record
WRITE (10) -~ Write one record
BOF (11) -- skip to end-of-
file
REWIND (12) -~ Skip to beginning-
of-file

WREOF (13) Write one record
at end-of-file
The next in-line parameter
must specify an address where the file
name in packed ASCII is to be found:
NOTE: The file name area (three cells)
must contain a predetermined ''name"
formatted in packed ASCII (two

characters per word, six characters

total).

4,3.24.2.2 CALL
CALL DISK
OPERATION
VARBL

4.3.24.2.3 NORMAL RETURN
DISK returns to the
location following the user's ''VARBL"
parameter. The AC will contain:
AC = 400000 or 400000 + -~

Successful operation

61

OTHER = Any other AC code is indicative
of an unsuccessful operation. See below.
4.3.24.2.4 ERROR RETURN
Type 1 SYSERR codes:
136 -- Invalid DISK command
137 -- Link set, SYSTEM out
of MEMAL
140 -- Attempt to open
fourth file
AC codes returned to user:
1 -- DISK out of file space
2 -~ Attempt to create a
fiie that already exists
3 -- Attempt to open a non-
existent file
4 -- Attempt to open an open
file
5 -- Attempt to operate on
a file that is not open
6 -~ Attempt to backspace
beyond beginning-of-
file
7 -- Attempt to operate
beyond end-of-file
10 -- Parity/timing error on
read or write
11 -- Maximum file size
exceeded
12 -- Open file list full
13 -~ Maximum number of files

in system

62

4.3.24.3 EXAMPLE
To read one record from a currently
"OPEN' disk file into an area called "INBUF'":
(IMPORTANT: It is assumed that a three cell
area called "NAME'" was initialized to a packed
ASCII file name.)
LAC (NAME) /LOAD ADDRESS OF FILE NAME AREA
DAC VARBL /STORE IN USER'S VARIABLE
LAC (INBUF) /LOAD ADDRESS OF USER'S BUFFER
CALL DISK /GO TO DI3K ROUTINE
READ /OPERATION
VARBL /POINTER TO CELL CONTAINING
/ADDRESS OF FILE
/NAME AREA
SMA /SUCCESSFUL (400000)?
JMP HELP /NO, GO EVALUATE ERRCR
/YES, CONTINUE

HELP SAD (10) /PARITY ERROR?
JMP ERROR1 /YES, GO TO ERROR1

SAD (5) /FILE NOT OPEN?
JMP OPEN - /YES, GO TO OPEN FILE
/ETC.

63

4.3.25 LOGOFF
4,.3.25.1 FUNCTION
LOGOFF terminates a job and does the
following:
1. Releases MEMAL (if any) obtained by SETUP
and/or DEFINE
2. Types a message on control teletype:
"JOBNR - JN - HAS TERMINATED SUCCESSFULLY!"
3. Suspends the job (DEAD, 200000) for operator
Intervention.
4,3.25.2 CALLING SEQUENCE
4.3.25.2.1 PARAMETERS
None
4.3.25.2.2 CALL
LOGOFF
4.3.25.2.3 NORMAL RETURN
LOGOFF does not return.
4.3,25.2.4 ERROR RETURN
None
4.3.25.3 EXAMPLE
To release MEMAL, type CTTY message and
suspend the job:
LOGOFF /GO TO LOGOFF ROUTINE

64

" 4.4

MISCELLANEOUS FUNCTION ROUTINES

76

4.4 MISCELLANECUS FUNCTION ROUTINES

4.4.1

BINDEC
4.,4.1,1 FUNCTION
BINDEC converts up to 18 binary digits
to decimal ASCII characters. The ASCII characters
are deposited in a buffer, one¢ per word, with a
user-specified bit configuration in the left-
most nine bits (i.e., 000, 240, 377, etc.).
The user may specify suppressicn of leading
zeroes,
4.4.1,2 CALLING SEQUENCE
4.4.1.2.1 PARAMETERS
SOURCE = Number to be
converted
RECEVE = Buffer address
(+ 400000 if
zZero suppression
is desired).
Number of digits to convert.
Desired value in left-most nine bits.
4.4.1.2.2 CALL
 CALL BINDEC
DESIRED HIGH ORDER VALUE +
NUMBER OF OCTAL DIGITS TGO CONVERT (1-6)
4.4.1.2.3 NORMAL RETURN
BINDEC returns to the
location following the call with the
ASCII characters in the user's buffer.
4.4.1.2.4 ERROR RETURN

None

65

77

4.4.1.3 EXAMPLE
To convert an 18-BIT binary number
to decimal ASCIT characters with an ASCII rutout
in the high order of each word:
LAC VARBL /LOAD SOME NUMBER TO BE
CONVERTED
DAC SOURCE /STORE IN SOURCE
LAC BUFFER /LOAD BUFFER ADDRESS
DAC RECEVE /STORE IN RECEVE
CALL BINDEC /CALL BINDEC ROUTINE
377006 /HIGH ORDER = RUBOUT -- SIX
OCTAL DICITS
/CONTINUE

66

4.4.2

CHECK1
4.4.2.1 FUNCTION

CHECK]1 compares the cont‘nts of
ANSWER with a specified list of data.
4.4.2.2 CALLING SEQUENCE

4.4.2.2.1 PARAMETERS

to be searched

4.4.2.2.2 CALL

4.4.2.2.3 NORMAL RETURN

location

following parameters:

REMAIN =

REMAIN ¥#

SOURCE = addrdss of list

ANSWER = Valu¢g to seek

CALL CHECK1

CHECK1 returny to the
following the cajl with the

0, if a match fojr ANSWER is
found
0, if no match }s found

4.4.2.2.4 ERROR RETURNS

4.4.2.3 EXAMPLE

To see if a given windo
3

None

W rumber from

a touch-sensitive screen is in a list of valid
responses called "VALRES': '

LAC (VALRES)

DAC SOURCE
CALL CHECK1

LAC REMAIN

67

/GET A RESPONSE FROM THE TOUCH
SENSITIVE

/LOAD ADDRESS OF VALID RESPONSE
LIST |

/STORE IN SOURCE

/CALL CHECK1 W/RESPONSE IN
ANSWER

/EVALUATE FINDINGS

/

79"

4.4.3 CLEAR
4.4.3.1 FUNCTION
CLEAR enables the user to zero a
specified portion cof memory.
4.4.3.2 CALLING SEQUENCE
4.4.3.2.1 PARAMETERS
The area to be zeroed must
be terminated with an asterisk (ASCII
252).
SOURCE = Address of area to be cleared
4.4.3.2.2 CALL
CALL CLEAR
4.4.3.2.35 NORMAL RETURN
CLEAR returns to the
location following the call.
4.4.3.2.4 ERROR RETURN
None
4.4.3.3 EXAMPLE
To zero an area called "BUFFER":

LAC (.AST) /LOAD AN ASTERISK
DAC ENDBUF /STORE AT END OF BUFFER
LAC (BUFFER) /LOAD ADDRESS OF BUFFER
DAC SOQURCE /STORE IN SOURCE
CALL CLEAR /GO TO CLEAR ROUTINE
/RETURNS HERE
BUFFER 0 /USER'S BUFFER
(]
ENDBUF 252 /TERMINATING ASTERISK

68

4.4.4

DECBIN
4.4.4.1

FUNCTION
DECBIN converts up to six ASCII digits

to an 18-bit binary number.

4.4.4.2

CALLING SEQUENCE
4.4.4.2,1 PARAMETERS

The ASCII buffer to be
converted may contain low order "LAMS"
(779777). These are ignored.
NOTE: The high order half of each
ASCII character %o be converted will
have no effect on the result.
SOURCE = Beginning address of ASCII
buffer

The in-line parameter (1-
6) indica‘’ s the number of words to
be converted.
4.4.4.2.2 CALL

CALL DECBIN

6 (FIELD WIDTH)
4.4.4,2,3 NORMAL RETURN

DECBIN returns to the
location following the field width
with the parameter:
ANSWER = The binary result
4.4.4.2.4 ERROR RETURN

None

69

8

1.

4.4.4.3 EXAMPLE
To convert a six word ASCII buffer to
its binary equivalent:
LAC (BUFFER) /LOAD ADDRESS OF BUFFER

DAC SOURCE /STORE IN SOURCE
CALL DECBIN /GO TO CONVERT IT
6 /FIELD WIDTH
LAC ANSWER /LOAD BINARY NUMBER
/CONTINUE

BUFFER 260 - /ZERO

260 /ZERO

261 /ONE

270 /SEVEN

271 /NINE

263 / THREE

70

4.4.5

DIVIDE
4.4.5.1 FUNCTION
DIVIDE enables the user to divide one
signed integer by another.
4.4.5.2 CALLING SEQUENCE
4.4.5.2.1 PARAMETERS
SOURCE = Dividend
RECEVE = Divisor
4.4.5.2.2 CALL
CALL DIVIDE
4.4.5.2.3 NORMAL RETURN
DIVIDE returns to the
location following the call with the
following parameters:
ANSWER = Quotient
REMAIN = Remainder
4.4.5.2.4 ERROR RETURN
Type 1 SYSERR ccde:
157 -- Attempt to divide

by zero
4.4,5.3 EXAMPLE
To divide 108 by 28:
LAC (10) /LOAD DIVIDEND
DAC SOURCE /STORE IN SOURCE
LAC (2) /LOAD DIVISOR
DAC RECEVE /STORE IN RECEVE
CALL DIVIDE /CALL DIVIDE ROUTINE
LAC ANSWER /EVALUATE RESULTS

71

83

4.4.6 DO
4.4.6.1 FUNCTION
DO executes a subroutine a variable
number of times. DOs may be nested three deep
but must be denested in the same order in which
they are nested. Branching out of a DO is
forbidden.
4.4.6.2 CALLING SEQUENCE
4.4.6.2.1 PARAMETERS
There are two in-line
parameters:
(a) The subroutine address
(b) Address of cell containing number
of repetitions.
NOTE: The routine to be executed must
be terminated by a "RETURN" statement.
4.4.6.2.2 CALL
CALL DO
SUBR /ADDRESS OF SUBROUTINE
VARBL /ADDRESS OF REPETITIONS CELL
4.4.6.2.3 NORMAL RETURN
DO returns to the location
fcllowing the call.
4.4.6.2.4 ERROR RETURN
Type 1 SYSERR codes:
167 -- Attempt to nest more
than three deep
170 -- Attempt to denest out

of order

o 72
ERIC .
.r_'~‘~

4.4.6.3 EXAMPLE
To execute a subroutine called SUBR1
three times:

LAC (3) /LOAD NUMBER OF REPETITIONS
DESIRED
DAC VARBL /STORE IN CELL CALLED VARBL
CALL DO /CALL DO ROUTINE
SUBR1 /SUBROUTINE ADDRESS
VARBL /ADDRESS OF REPETITIONS CELIL
. /CONTINUE
73

85 .

4.4.7 ERROR
4.4.7.1 FUNCTION
ERROR serves as the IMP error handler.
ERROR makes a call on Executive System Routine
SYSERR, requesting a Type 1 SYSERR. IMP users
may use ERROR, providing they restrict their
error codes to the range 318 - 778.
4.4.7.2 CALLING SEQUENCE
4.4.7.2.1 PARAMETERS
AC = Error Code Number
4.4.7.2.2 CALL
JMP ERROR
. 4.4.7.2.3 NORMAL RETURN
ERROR does not return.
Job is suspended on "DEAD'" (operator
intervention).
4.4.7.2.4 ERROR RETURN
Not applicable
4.4.7.3 EXAMPLE
LAW 31 /LOAD ERROR CODE
JMP ERROR /GO TO ERROR ROUTINE

74

4.4.8 EXPO
4.4.8.1 FUNCTION
EXPO exponentiates any given value.
4.4.8.2 CALLING SEQUENCZ
4.4.8.2.1 PARAMETERS
SQURCE = Value
RECEVE = Exponent
4.4.8.2.2 CALL
CALL EXPO
4.4.8.2.3 NORMAL RETURN
EXPO returns to the
location following the call with the
result in ANSWER.
4.4.8.2.4 LRROR RETURN
A set LINK upon return
indicates AC overflow.
4.4.8.3 EXAMPLE
To raise the value 108 to the 5th power:

LAC (10) /LOAD OCTAL VALUE
DAC SOURCE /STORE IN SOURCE
LAC (5) /LOAD OCTAL EXPONENT
DAC RECEVE /STORE IN RECEVE
CALL EXPO /GO TO EXPO ROUTINE
SZL /JOVERFLOW?
JMP ERROR1 /YES TO PROCESS ERROR
LAC ANSWER /LOAD RESULT
/CONTINUE

ERROR 1 LAW 30 /LOAD ERROR CODE

JMP ERROR /GO TO ERROR ROUTINE

75

4.4.9 LOAF
4.4.9.1 FUNCTION
LOAF is a control routine which allows
the user to suspend a program for a specified
number of seconds.
4.4.9.2 CALLING SEQUENCE
4.4.9.2.1 PARAMETERS
In-line parameter following
the call must indicate the time delay
in seconds.
4.4.9.2.2 CALL
CALL LOAF
SECONDS (octal number)
4.4.9.2.3 NORMAL RETURN
LOAF returns to the location
following the time delay parameter upon
expiration of delay period.
4.4.9.2.4 ERROR RETURN
Type 0 SYSERR code:
104 -- Time delay was zero
or greater than
1434708 (s .1448 >
1434708)

4.4.9.3 EXAMPLE
To suspend a program oparation for 10

seconds:
CALL LOAF /GO TC LOAF
12 /NUMBER OF SECONDS (OCTAL)

/RETURNS 1IERE

76

4.4.10 LOOKUP
4.4.10.1 FUNCTION
LOOKUP maintains a pointer to the current
CROW segment. On request, it will update the
segment pointer for each message played.
Optionally, LOOKUP will add the current CROW
segment to a user CROW message before updating
the segment pointer.
4.4.10.2 CALLING SEQUENCE
4,1,10.2.1 PARAMETERS
SOURCE = 400000 + Track,
Length and Segment
to update the CROW
segment pointer
SOURCE = 000000 + Track,
Length to add the
current segment
and reset the
segment pointer
4.4.,10.2.2 CALL
CALL LOOKUP
4 4,10,2,3 NORMAL RETURN
LOOKUP returns to the
liication following the call. ANSWER
w. 11 contain the Crow belt segment
address.
4 4.10.2.4 ERROR RETURN
Not Applicable
4.4.160.3 E (AMPLE
T> set the IMP SEGPTR to reflect the
Crow address indicated in CROWAD:

77

89

LAC CROWAD
TAD (400000)
CALL LOOKUP
LAC ANSWER
DAC CROWAD

78

JLOAD TLS

/ADD 400000

/GO TO LOOKUP ROUTINE
JLOAD SEGMENT ADDRESS
/RESTORE IN CROWAD
/CONTINUE

4.4.11 MEAN
4.4.11.1

FUNCTION
MEAN enables the user to determine the

arithmetic mean of a series of values.

4.4.11.2

4.4.11.3

CALLING SEQUENCE
4.4.11.2.1 PARAMETERS

e series of values must
be terminated by an asterisk (ASCII 252).
Care must be taken to insure that the sum
of the values will not cause AC overflow.
SOURCE = Starting address of series of

values.

4,4,11.2.2 CALL

CALL MEAN
4.4.11.2.3 NORMAL RETURN

MEAN returns to the location
immediately folilowing the call with the
parameter:
ANSWER = Arithmetic mean
4.4.11.2.4 ERROR RETURN

None
EXAMPLE

To determine the mean of a series of

numbers beginning in location BUFFER:
LAC (.AST) /LOAD AN ASTERISK
DAC ENDBUF /STORE AT END OF BUFFER
LAC (BUFFER) /LOAD BEGINNING ADDRESS
DAC SOURCE /STORE IN SOURCE
CALL MEAN /GO TO AVERAGE THE VALUES

/CONTINUE

79

91

BUFFER 1 /OCTAL VALUES TO BE AVERAGED

N O s N
NN NN NN NN N N

10
ENDBUF 252 / TERMINATOR

80

4.4.12 MOVE
4.4.12.1

locations
4.4,12.2

4.4.12.3

FUNCTION
MOVE moves the contents of one or more
to another set of locations.
CALLING SEQUENCE

4.4,12.2.1 PARAMETERS

SCURCE = Address of sending

area
RECEVE = Address of
receiving area

The end of the area to be moved must be
marked by a lo:zation containing an
asterisk.
4.4,12,2.2 CALL

CALL MOVE
4.4,12.2.3 NORMAL RETURN

MOVE returns to the
location following the eall.
4.4.12.2.4 ERROR RETURN

Nor:e
EXAMPLE
To move data from AREAl to AREA2:

LAC (AREAl) /LOAD ADDRESS OF SENDING AREA
DAC SOURCE /STORE IN SOURCE
LAC (AREA2) /LOAD ADDRESS OF RECEIVING

AREA

DAC RECEVE /STORE IN RECEVE
CALL MOVE /CALL MOVE ROUTINE

/CONTINUE
/
/

81

9

J

AREA 1

AREA 2

AREA 2

301
302
303
304
252

© © O © © ©o ©

301
302
303
304

82

/AREA1 BEFORE AND AFYER MOVE
/

/
/
/

/AREA2 BEFORE MOVE

NN N N NN N

/AREA2 AFTER MOVE
/
/

/
/NOTE THAT THE ASTERISK IS

NOT MOVED
/
/

4.4.13 MULTIP
4.4.13.1 FUNCTION
MULTIP (MULTIPLY) multiplies one value
by another.
4.4,13.2 CALLING SEQUENCE
4.4.13.2.1 PARAMETERS
SOURCE = Multiplicand
RECEVE = Multiplier
4.4,13.2.2 CALL
CALL MULTIP
4.4.13.2.3 NORMAL RETU2N
MULTIP returns to the next
location following the call with the
following parameter:
ANSWER = Product
4.4.13.2.4 ERROR RETURN
None
4.4,13.3 EXAMPLE
To multiply 13 by 198:

LAC (13) /LOAD MULTIPLICAND
DAC SOURCE /STORE IN SOURCE
LAC (10) /LOAD MULTIPLIER
DAC RECEVE /STORE IN RECEVE
CALL MULTIP JCALL MULTIPLY ROUTINE
LAC ANSWER /CONTINUE

. /

83

g 5 o

4.4.14 RANDOM
4.4.14.1 FUNCTION
RANDOM generates a 1- to 6-digit
random octal number.
4.4.14.2 CALLING SEQUENCE
4.4.14.2.1 PARAMETERS
One in-line parameter to
specify the width of the random number
must be included in the call on RANDOM.
4.4.14.2.2 CALL
CALL RANDOM
1, 2, 3, 4, 5, 0or 6
/FIELD WIDTH
4.4.14.2.3 NORMAL RETURN
RANDOM returns to the
location following the call with the
random number in ANSWER.
4.4.14.2.4 ERROR RETURN
None
4.4.14.3 EXAMPLE

To generate a 4-digit random number:

CALL RANDOM /CALL RANDOM ROUTINE
4 /FOR A 4-DIGIT NUMBER
LAC ANSWER /CONTINUE

/

84

4.4,15 TIMEL
4.4.15.1 FUNCTION
TIME1l returns the complimented time-
of-day. TIMEl is usually used in conjunction with
the TIME2 routine to determine the elapsed time
¢latency) between one event and another.
4.4.15.2 CALLING SEQUENCE
4.4,15.2,1 PARAMETERS
None
4.4,15.2.2 CALL
CALL TIME1
4.4,15.2.3 NORMAL RETURN
TIME1 returns to the
location following the call with the
parameter:
TIME = Complimented TOD
4.4,15.2.4 ERROR RETURN
None
4.4.15.3 EXAMPLE
To onbtain the complimented time-of-day:
CALL TIME1l
(Normally, some input device is activated here
for a subject or user response after which TIME2
is called.)

g5

4.4.16 TIME2
4.4.16.1 FUNCTION
TIME2, when used in conjunction with
TIMEl, engbles the user to determine the elapsed
time between one event and another.
4.4.16.2 CALLING SEQUENCE
4.4,.16.2.1 PARAMETERS
TIME = Complimented TOD
obtained at same previous event by
TIME1
4.4.16.2.2 CALL
CALL TIME2
4.4,16.2.3 NORMAL RETURN
TIME2 adds the complimented
time-of-day in the "TIME" cell (obtained
by TIMEl) to the current time, deposits
the result in the "TIME" cell, and
returns to the user.
NOTE: Latency is returned in
thousandths of seconds with the assumed
decimal point between the third and
fourth octal digits.
4.4.16.2.4 ERROR RETURN
None
4.4.16.3 EXAMPLE
Assuming TIME1l has been called at some
previous point, a gall may be made to TIME2 to

obtain a latency value:

CALL TIME2 /GO FOR LATENCY
LAC TIME /LOAD THE LATENCY
/EVALUATE

86

4.4.17 TOTAL
4.4.17.1

values.
4.4.17.2

4.4.17.3

FUNCTION
TOTAL computes the sum of a series of

CALLING SEQUENCE
4.4,17.2.1 PARAMETERS
SOURCE = Beginning address
of the list of
numbers
NOTE: The list of numbers must be
terminated by an asterisk.
4,4.17.2.2 CALL
CALL TOTAL
4.4,17,2,3 NORMAL RETURN
TOTAL returns to the
location following the call with the
following parameter:
ANSWER = Sum of the series of numbers
4.4.17.2.4 ERROR RETURN
None
EXAMPLE
To find the sum of a series of

numbers beginning it NUMLST:
LAC (NUMLST) /LOAD THE BEGINNING ADDRESS

OF THE NUMBERS

DAC SOURCE /PUT IT IN SOURCE
CALL TOTAL /CALL TOTAL ROUTINE
LAC ANSWER /CONTINUE
. /
/
. /
87

99

NUMLST 1036 /BEGINNING OF LIST OF NUMBERS

12 /
364 /
721 /
53047 /
33/
252 /LIST TERMINATED BY AN
ASTERISK
88

TOO

REFERENCES

Judd, Wilson A. The development of an on~line laboratory for CAI
and behavioral research (1964-1968). Technical Report.
Pittsburgh, Pennsylvania: Learning Research and Development
Center, University of Pittsburgh, 1969.

Nemitz, Bertram P. SKOOLBOL: A simplified user's language for
programming the PDP-7. Working Manual. Pittsburgh,
Pennsylvania: Learning Research and Development Center,
University of Pittsburgh, 1968

89

- TN atie—

101

APPENDIX A: RESERVED WORDS

LOCATION NAMES

ACSAVE PUSHJ 3 *SKEND
ADRESS RECEVE SLIDE
ANSWER REMAIN SOURCE
COMMON RETADD STACK
CONTEN *SKCELL STKBSE
ITEM *SKC1 STKPTR
PUSHJ : TIME
PUSHJ2 *SKC56 TRNVEC

*All tags beginning with the letters ''SK'" are reserved for IMP.

ROUTINE NAMES

BACKUP EXPO MEAN SETUP
BINDEC FEED MOVE SHOLET
CHECK1 FIND MULTIP SKIP
CLEAR GETKEY MUMBLE SPACE
DECBIN LITOFF OBTAIN SPACEB
DEFINE LITON PARAM STEPUP
DISK LOAF POPJ STORE
DISPLA LOCATE PRINT TAPE
DIVIDE LOGOFF PUNCIIO TIMEl
DO LOGON RANDOM TIME2
ERASE LOGOND READKY TOTAL
ERROR LOGONT RELESE TYPE
EXCEPT LOOKUP SAVE TYPKEY
TUCH

90

APPENDIX B: 1I/0 PARAMETER LISTS

LOCATION
NWMBER ~ DEVICE CONTENT USAGE
1 SCREEN 300001 STORAGE MODE, TEXT, UNIT ONE
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 KEYBOARD 200061 TIME DELAY, UNIT ONE
10 0
11 0
12 TOUCH 1 UNIT ONE
13 0
14 0
15 o
16 0
17 0
18 PROJECTOR 1200 UNIT ONE, SUSPEND
19 2200 UNIT TWO, SUSPEND
20 0
21 0
22 TTY/DPHONE 240001 READ, UNIT ONE, TIME DELAY, ECHG
23 240002 READ, UNIT TWO, TIME DELAY, ECHO
24 240003 READ, UNIT THREE, TIME DELAY, ECHO
25 400001 PRINT, UNIT ONE, SUSPEND
26 ' 400002 PRINT, UNIT TWO, SUSPEND
27 400003 PRINT, UNIT THREE, SUSPEND
28 0
29 0
91

106G

LOCATION

NUMBER DEVICE CONTENT USAGE
30 0
31 CROW 1 UNIT ONE
32 0
33 0
34 0
35 0
36 0
37 0
38 PUNCH 400000 SUSPEND, PUNCH ASCII
39 0
40 PRINTER 400000+ SUSPEND, COMM CELL ADDRESS
COMM CELL
41 0
42 ¢
43 MAGTAPE 0
44 0
45 DISK 0
46 0
47 0
51 0
52 0
53 coMM CELL COMM CELL ADDRESS
54 COMCEL 0 CoMM CELL ONE
55 COMCEL 0 CoMM CELL TWO

92

NUMBER

100
101
102
103
104
105
106
107
110
111
112
113
114
115
116
117
120
121
122
123
124
125
126
127
130
131
132
133
134

APPENDIX C: ERROR CODES

SIGNIFICANCE

GRAB ERROR-SCREEN
GRAB ERROR~KEYBOARD

GRAB ER
GRAB ER

ROR-TOUCH
ROR-HYSPRJ

GRAB ERROR-BAGTEL/DPHONE

GRAB ER

ROR~-CROW

GRAB ERROR-PUNCH

GRAB ER

ROR~-PRINTER

TO BE ASSIGNED
TO BE ASSIGNED
TO BE ASSIGNED

TO BE A
RELEASE
RELEASE
RELEASE
RELEASE
RELBASE
RELEASE
RELEASE
RELEASE

SSIGNED
ERROR~SCREEN
ERROR-KEYBOARD
ERROR-TOUCH
ERROR-HYSPRJ

ERROR-BAGTEL/DPHONE

ERROR-CROW
ERROR~-PUNCH
ERROR-PRINTER

TO BE ASSIGNED

TO BE ASSIGNLD

TO BE ASSIGNED

TO BE ASSIGNED
REQUEST ERROR~SCREEN
REQUEST ERROR-~KEYBOARD
REQUEST ERROR-~TOUCH
REQUEST ERROR-SPEAK
REQUEST ERROR-PUNCH

93

GENERATING
ROUTINE _
OBTAIN
OBTAIN
OBTAIN
OBTAIN
OBTAIN
OBTAIN
OBTAIN
OBTAIN

RELESE
RELESE
RELESE
RELESE
RELESE
RELESE
RELESE
RELESE

DISPLA
READKY
TUCH

MUMBLE
PUNCHO

10.,

HUMBER

135
136
137
140
141
142
143
144
145
146
147
150
151
152
153
154
155
156

157
160
161
162
163
164
168

166
167
170
171

SIGNIFICANCE

REQUEST ERROR-PRINTER

INVALID DISK COMMAND

REQUEST ERROR-DISKUS

ATTEMPT TO OPEN FOQURTH FILE

TO BE ASSIGNED

REQUEST ERROR-PROJECTOR 1
REQUEST ERROR-PROJECTOR 2

TO BE ASSIGLED

TG BE ASSIGNED

REQUEST ERROR-TELETYPE 1-PRINT
REQUEST ERROR-TELETYPE 2-PRINT
REQUEST ERROR-TELETYPE 3-PRINT
REQUEST ERROR-TELETYPE 1-READ
REQUEST ERROR-TELETYPE 2-READ
REQUEST ERROR-TELETYPE 3-READ
TO BE ASSIGNED

TO BE ASSIGNED

ATTEMPT TO STACK MORE THAN FIVE
CROW MESSAGES

ATTEMPT TO DIVIDE BY ZERO
PHYSICAL TAPE DRIVE FAILURE
MAGTAPE PARITY ERROR

MAGTAPE OTHER ERROR

PUSHJ STAKC OVERFLOW

PUSHJ STACK UNDERFLOW

ATTEMPT TO ALTER NONEXITENT
PARAMETER

TO BE ASSIGNED

NESTING MORE THAN THREE DEEP
UNNESTING MORE THAN THREE DEEP
NO "“FINISH" PARAMETER

94

GENERATING

ROUTINE

PRINT
DISK
DISK
DISK

LOCATE
LOCATE

TYPE
TYPE
TYPE
GETKEY
GETKEY
GETKEY

MUMBLE

DIVIDE
TAPE
TAPE
TAPE
PUSHJ
POPJ
EXCEPT

SETUP

NUMBER

172
173
174
175
176
177

SIGNIFICANCE

ILLEGAL RETURN ADDRESS INCREMENT

TO BE ASSIGNED
TO BE ASSIGNED
TO BE ASSIGNED
TO BE ASSIGNED
TO BE ASSIGNED

95

GENERATING

ROUTINE

STEPUP

10

rg

APPENDIX D: IMP EQUIVALENCES

ASCII CODE EQUIVALENCES

MNEMONIC OCTAL VALUE MEANING
A 301 UPPER CASE A
.B 302 UPPER CASE B
.C 303 UPPER CASE C
.D 304 UPPER CASE D
.E 305 UPPER CASE E
.F 306 UPPER CASE F
.G 307 UPPER CASE G
H 310 UPPER CASE H
I 311 UPPER CASE I
.J 312 UPPER CASE J
K 313 UPPER CASE K
L 314 UPPER CASE L
M 315 UPPER CASE M
N 316 UPPER CASE N
0 317 UPPER CASE O
P 320 UPPER CASE P
.Q 321 ’ UPPER CASE Q
.R 322 UPPER CASE R
.S 323 UPPER CASE S
.T 324 UPPER CASE T
.U 325 UPPER CASE U
v 326 UPPER CASE V
W 327 UPPER CASE W
X 330 UPPER CASE X
Y 331 UPPER CASE Y
.z 332 UPPER CASE Z
. ZERO 260 ZERQ
.ONE 261 ONE

g6
Q
ERIC

AUVO:

MNEMONIC

.THO
.THREE
.FOUR
.FIVE
.SIX
.SEVEN
.EIGHT
.NINE
.EXC
.QOT
.NOS
.DoL
.PRC
AMP
.APS
.LPR
.RPR
.AST
.PLU
.COM
MIN
.PER
.SLH
.COL
.SCL
.LTH
.EQU
.GTH
.Qus
.ATS
.LBR

OCTAL VALUE

262
263
264
265
266
267
270
271
241
242
243
244
245
246
247
250
251
252
253
254
255
256
257
272
273
274
275
276
277
300
333

97

MEANING

TWO

THREE

FOUR

FIVE

SIX

SEVEN

EIGHT

NINE
EXCLAMATION
QUOTE

NUMBER SIGN
DOLLAR SIGN
PERCENT
AMPERSAND
APOSTROPHE
LEFT PARENTHESIS
RIGHT PARENTHESIS
ASTERISK
PLUS SIGN
COMMA

MINUS SIGN
PERIOD

SLASH

COLON
SEMI-COLON
LESS THAN
EQUAL SIGN
GREATER THAN
QUESTION MARK
AT SIGN

LEFT BRACKET

109

MNEMONIC

«BSL
-RBR
-UAR
.LAR
.LF
.CR
.SP
RO

OCTAL VALUE

334
335
336
337
212
215
240
377

98

MEANING

BACKWARD SLASH
RIGHT BRACKET
UP ARROW

LEFT ARROW
LINEFEED
CARRIAGE RETURN
SPACE

RUBOUT

EQUIVALENCE

FINISH
TTY1
TTY2
TTY3
PROJ1
PROJ2
TOF
SINGLE
DOUBLE
TRIPLE
CREATE
OPEN
CLOSE
DELETE
BACK
FORWRD
READ
WRITE
EOF
REWIND
WROF

INSTRUCTION EQUIVALENCES

VALUE

777777
1

2

3

1

2
500000
204

604
1204

NN B N

10
11
12
13

MEANING

LIST TERMINATOR
LOGICAL TELETYPE OR DATAPHONE #1
LOGICAL TELETYPE OR DATAPHONE #2
LOGICAL TELETYPE OR DATAPHONE #3
LOGICAL PROJECTOR #1

LOGICAL PROJECTOR #2

TOP -OF - FORM

SINGLE SPACING (132, CHAR/LINE)
DOUBLE SPACING (132, CHAR/LINE)
TRIPLE SPACING (132;, CHAR/LINE)
OPEN NEW DISK FILE

OPEN OLD DISK FILE

CLOSE DISK FILE

CLOSE AND DELETE DISK FILE
BACKSPACE RECORD(S)

SKIP RECORD(S) FORWARD

READ ONE RECORD

WRITE ONE RECORD

SKIP FORWARD TO END-OF-FILE

SKIP BACKWARD TO BEGINNING-OF-FILE
WRITE ONE RECORD AT END-OF-FILE

99

APPENDIX E: CRT CHARACTER SIZE CHART

CHAR. SIZE SPACES (HORIZONTAL) LINES (VERTICAL)
3 28 13
4 21 10
5 17 8
6 14
7 i2 5

Q 100

